Parsing as Language Modeling

نویسندگان

  • Do Kook Choe
  • Eugene Charniak
چکیده

We recast syntactic parsing as a language modeling problem and use recent advances in neural network language modeling to achieve a new state of the art for constituency Penn Treebank parsing — 93.8 F1 on section 23, using 2-21 as training, 24 as development, plus tri-training. When trees are converted to Stanford dependencies, UAS and LAS are 95.9% and 94.1%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

بررسی مقایسه‌ای تأثیر برچسب‌زنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی

In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...

متن کامل

تأثیر ساخت‌واژه‌ها در تجزیه وابستگی زبان فارسی

Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...

متن کامل

A New Perspective of Statistical Modeling by PRISM

PRISM was born in 1997 as a symbolic statistical modeling language to facilitate modeling complex systems governed by rules and probabilities [Sato and Kameya, 1997]. It was the first programming language with EM learning ability and has been shown to be able to cover popular symbolic statistical models such as Bayesian networks, HMMs (hidden Markov models) and PCFGs (probabilistic context free...

متن کامل

Language Modeling Using Efficient Best-first Bottom-up Parsing

In this paper we present a two-stage best-first bottom-up word-lattice parser which we use as a language model for speech recognition. The parser works by using a “Figure of Merit” that selects lattice paths while simultaneously selecting syntactic category edges for parsing. Additionally, we introduce a modified version of the Inside-Outside algorithm used as a pruning stage between syntactic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016